Excitation of H-Atoms by Fast Protons

I. M. Cheshire and H. L. Kyle Laboratory for Theoretical Studies Goddard Space Flight Center Greenbelt, Maryland

N66 17242

A simple formula for the total Born cross section for the excitation of ground state H-atoms to any excited state n is given and a table of cross sections is included for representative n and impact energies.

In this paper we consider excitation of ground state H-atoms by protons according to the reaction

$$H^{+}+H(1s) \rightarrow H^{+}+H(n,\ell,m)$$
 (1)

We evaluate the total Born cross section $Q(15) = \mathcal{L}_{m} Q(15, n\ell_{m})$ in the limit of infinitely massive protons. This latter approximation has a negligible effect on the accuracy of the calculation (Bates and Griffing 1953). May (1965) has evaluated Q(15, n) in the limit of large n while other workers (Bates and Griffing 1953 and Mittleman 1963) have evaluated $Q(15, n\ell) = \mathcal{L}_{m} Q(15, n\ell_{m})$ for various values of n and ℓ up to n = 6. The relevant Born cross section is (Bates 1962)

$$Q(is,n) = \frac{8\pi\alpha_o^2}{v^2} \int_{\mathbf{k}}^{\infty} \frac{d\mathbf{k}}{\mathbf{k}^3} \frac{\langle is| \exp(i\mathbf{k}.\mathbf{L})|n\ell m\rangle|^2}{|\mathbf{k}|^2}$$
(2)

where v is the velocity of the incident proton (we use atomic units, hence v = 1 corresponds to a proton energy of 25 kev), a_0 is the Bohr radius, k_0 is the minimum momentum change $k_0 = (1 - \frac{1}{n^2})/2v$ and

$$\langle 1s| exp(ik,t)|nlm \rangle = \int dt \gamma_{1s}^*(t) \gamma_{nlm}(t) exp(ik,t)$$
 (3)

where $\mathcal{V}_{npm}(\mathfrak{t})$ is the hydrogenic wave function with quantum numbers . n, ℓ , m. Cheshire and Kyle (1965) have shown that

$$= \frac{2^{8}k^{2}}{3n^{2}} \left(\frac{k^{2} + (1 - \frac{1}{n})^{2}}{k^{2} + (1 + \frac{1}{n})^{2}} \right) \frac{n(3k^{2} + 1 - \frac{1}{n^{2}})}{(k^{2} + (1 - \frac{1}{n})^{2})^{3}(k^{2} + (1 + \frac{1}{n})^{2})^{3}}.$$
(4)

For large n

$$\left(\frac{k^{2}+(1-\frac{1}{n})^{2}}{k^{2}+(1+\frac{1}{n})^{2}}\right)^{h} = \exp\left\{-\frac{4}{1+k^{2}}+O\left(\frac{1}{n^{2}}\right)\right\}$$
 (5)

so that (4) becomes

$$\leq \frac{2^{8}k^{2}}{\ell,m} \left| \left\langle 15 \right| \exp \left(i \underline{k}, \underline{t} \right) \left| n \ell_{m} \right\rangle \right|^{2} = \frac{2^{8}k^{2}}{3n^{3}} \frac{(3k^{2}+1)}{(1+k^{2})^{6}} \exp \left\{ -\frac{4}{1+k^{2}} \right\} + O\left(\frac{1}{n^{3}} \right) \tag{6}$$

which is the result quoted by May.

Using (3) and (4) we have computed Q(1s,n) for a representative set of impact energies and a reasonably comprehensive set of n's.

TABLE I Q(1s - n) in units of $\pi a_0^2/n^3$

Two at Phones	1, 11 11 11 11 11 11 11 11 11 11 11 11 1								
Impact Energy (kev)	1	5	1 2.5	25	50	100	200	400	800
2	1.20	13.4	18.6	17.3	13.6	9.55	6.23	3.86	2.31
3	0.392	7.62	12.0	11.4	8.78	6.02	3.84	2.33	1.38
4	0.270	6.31	10.4	9•95	7.67	5.22	3.30	2.00	1.17
5	0.227	5.78	9.80	9.38	7.22	4.90	3.09	1.86	1.09
6	0.207	5.52	9.47	9•09an	6.99	4.74	2 .9 8	1.80	1.05
7	0.196	5 .3 6	9.28	8.93	6.86	4.64	2.92	1.76	1.03
8	0.189	5.27	9 .1 6	8.82	6.77	4.58	2.88	1.73	1.01
9	0.184	5.20	9.08	8.75	6.72	4.54	2 .86	1.72	1.00
10	0.182	5 .1 5	9.03	8:70	6.68	4.51	2.84	1.70	0.99
15	0.174	5.05	8.89	8.58	6.58	4.45	2.79	1.68	0.98
20	0.172	5.01	8.85	8.54	6.55	4.42	2.78	1.67	0.97
25	0.171	4.99	8.82	8.52	6.54	4.41	2.77	1.66	0.97

References

- 1. Bates, D. R., 1962, Atomic and Molecular Processes, (New York, Academic Press), pp. 549-621.
- 2. Bates, D. R. and Griffing, G., 1953, Proc. Phys. Soc., A66, 961-71.
- 3. Cheshire, I. M., and Kyle, H. L., 1965, Physics Letters, 17, 115-6.
- 4. May, R. M., 1965, Physics Letters, <u>14</u>, 98-9.
- 5. Mittleman, M. H., 1963, Phys. Rev., <u>129</u>, 190-3.